Factor-critical property in 3-dominating-critical graphs
نویسندگان
چکیده
Let γ(G) be the domination number of a graph G. A graph G is domination-vertex-critical, or γ-vertex-critical, if γ(G− v) < γ(G) for every vertex v ∈ V (G). In this paper, we show that: Let G be a γ-vertex-critical graph and γ(G) = 3. (1) If G is of even order and K1,6-free, then G has a perfect matching; (2) If G is of odd order and K1,7-free, then G has a near perfect matching with only three exceptions. All these results improve the known results. Keyword : Vertex coloring, domination number, 3-γ-vertex-critical, matching, near perfect matching, bicritical
منابع مشابه
m at h . C O ] 2 8 A ug 2 00 6 Factor - Critical Property in 3 - Dominating - Critical Graphs ∗
A vertex subset S of a graph G is a dominating set if every vertex of G either belongs to S or is adjacent to a vertex of S. The cardinality of a smallest dominating set is called the dominating number of G and is denoted by γ(G). A graph G is said to be γ-vertex-critical if γ(G− v) < γ(G), for every vertex v in G. Let G be a 2-connected K1,5-free 3-vertex-critical graph. For any vertex v ∈ V (...
متن کامل. C O / 0 60 86 72 v 1 2 8 A ug 2 00 6 Factor - Critical Property in 3 - Dominating - Critical Graphs ∗
A vertex subset S of a graph G is a dominating set if every vertex of G either belongs to S or is adjacent to a vertex of S. The cardinality of a smallest dominating set is called the dominating number of G and is denoted by γ(G). A graph G is said to be γ-vertex-critical if γ(G− v) < γ(G), for every vertex v in G. Let G be a 2-connected K1,5-free 3-vertex-critical graph. For any vertex v ∈ V (...
متن کاملMatching and Factor-Critical Property in 3-Dominating-Critical Graphs∗
Let γ(G) be the domination number of a graphG. A graphG is dominationvertex-critical, or γ-vertex-critical, if γ(G − v) < γ(G) for every vertex v ∈ V(G). In this paper, we show that: Let G be a γ-vertex-critical graph and γ(G) = 3. (1) If G is of even order and K1,6-free, then G has a perfect matching; (2) If G is of odd order and K1,7-free, then G has a near perfect matching with only three ex...
متن کاملMatching properties in connected domination critical graphs
A dominating set of vertices S of a graph G is connected if the subgraph G[S] is connected. Let c(G) denote the size of any smallest connected dominating set in G. A graph G is k-connected-critical if c(G)= k, but if any edge e ∈ E(Ḡ) is added to G, then c(G+ e) k − 1. This is a variation on the earlier concept of criticality of edge addition with respect to ordinary domination where a graph G ...
متن کاملDouble Roman domination and domatic numbers of graphs
A double Roman dominating function on a graph $G$ with vertex set $V(G)$ is defined in cite{bhh} as a function$f:V(G)rightarrow{0,1,2,3}$ having the property that if $f(v)=0$, then the vertex $v$ must have at least twoneighbors assigned 2 under $f$ or one neighbor $w$ with $f(w)=3$, and if $f(v)=1$, then the vertex $v$ must haveat least one neighbor $u$ with $f(u)ge 2$. The weight of a double R...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Discrete Mathematics
دوره 309 شماره
صفحات -
تاریخ انتشار 2009